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Abstract— This paper presents a novel approach for syn-
thesizing control barrier functions (CBFs) from high relative
degree safety constraints: Rectified CBFs (ReCBFs). We begin
by discussing the limitations of existing High-Order CBF
approaches and how these can be overcome by incorporating an
activation function into the CBF construction. We then provide
a comparative analysis of our approach with related methods,
such as CBF backstepping. Our results are presented first for
safety constraints with relative degree two, then for mixed-
input relative degree constraints, and finally for higher relative
degrees. The theoretical developments are illustrated through
simple running examples and an aircraft control problem.

I. INTRODUCTION

Control barrier functions (CBFs) [1], [2] are a useful
tool for safety-critical control systems, providing a way to
synthesize controllers enforcing state constraints. One of the
main advantages of CBFs is the ease of control synthesis
using methods such as quadratic programming [1], safety
filters [3], or closed-form solutions [4], [5]. Moreover, there
exist numerous extensions of CBFs that address properties
beyond safety such as robustness and stability [6]. Neverthe-
less, these controller design techniques assume that a CBF
is already given for the safety constraint considered.

Constructing CBFs can be challenging, especially when
dealing with safety constraints with higher relative degrees.
The most popular approach for addressing this issue is High-
Order CBFs (HOCBFs) [7]–[11]. While effective in some
cases, HOCBFs are not traditional CBFs. Many standard
results associated with CBFs, such as robustness and stabil-
ity, do not readily transfer to HOCBFs, and extending these
results to HOCBFs is often nontrivial [8], [12], [13].

Another approach to constructing CBFs is backstep-
ping [14], [15], which produces CBFs rather than HOCBFs.
This method requires systems to be in strict feedback form,
or transformable into strict feedback form via output coor-
dinates [16]. Backstepping involves designing a sequence
of smooth virtual controllers for a sequence of auxiliary
systems, which increases the complexity of control design
compared to HOCBFs. While recent advancements [5], [17]
have made the design of these virtual controllers systematic,
the requirements on the system’s structure may preclude the
application of backstepping to more complex systems.
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An advantage of backstepping over HOCBFs is its ability
to handle constraints with mixed-input relative degree, in
the sense of independent inputs appearing at different orders
of derivatives. In the context of HOCBFs, [18] addresses
this issue using integral control [19] to dynamically extend
inputs, materializing them at different relative degrees. While
this enables controller synthesis, it obscures the original
inputs in the design process, making it difficult to analyze
or minimize control effort.

The main contribution of this paper is the development of
a method for constructing CBFs from safety constraints with
higher relative degrees. Our approach extends HOCBF ideas
by introducing activation functions that consider HOCBF
constraints only when necessary. The result is a Rectified
Control Barrier Function (ReCBF), rather than a HOCBF,
that inherits existing properties of CBFs such as stability and
robustness. In addition, our approach can generate true CBFs
from existing HOCBFs, and it is better suited to handle safety
constraints with a weak relative degree for which HOCBF
may struggle. We discuss our method by focusing first on
safety constraints with relative degree two, and then we move
on to mixed-input and higher relative degree constraints.
Moreover, we provide a comparative analysis of ReCBFs
with other methods such as HOCBF and backstepping, and
illustrate how the main ideas presented herein may also be
adapted to these approaches. Finally, we apply our method
to a fixed-wing aircraft control problem.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Control Barrier Functions

Consider a nonlinear control affine system1:

ẋ = f(x) + g(x)u, (1)

with state x ∈ Rn and input u ∈ Rm, where f : Rn → Rn
and g : Rn → Rn×m are smooth functions. Given a locally
Lipschitz feedback controller k : Rn → Rm for (1), the
closed-loop system with u = k(x) and initial condition
x0 ∈ Rn admits a unique continuously differentiable trajec-
tory x : I(x0) → Rn defined on a maximal interval of
existence I(x0) ⊆ R≥0. Our main objective in this paper is

1A continuous function α : (−a, b) → R, a, b ∈ R>0, is said to be an
extended class K function (α ∈ Ke) if α(0) = 0 and α is strictly increasing.
If a = b = ∞ and limr→±∞ α(r) = ±∞ then α is said to be an extended
class K∞ function (α ∈ Ke

∞). For a continuously differentiable function
α : R → R, we define α′(r) := dα

dr
(r). With an abuse of terminology,

we say that a function is smooth if it is differentiable as many times as
necessary. For a smooth function h : Rn → Rp and vector field f : Rn →
Rn we define Lfh(x) := ∂h

∂x
(x)f(x) as the Lie derivative of h along f

with higher order Lie derivatives denoted by Li
fh(x) :=

∂Li−1
f

h

∂x
(x)f(x).



to design feedback controllers k such that the closed-loop
system satisfies state constraints x(t) ∈ C along trajectories,
where C ⊂ Rn is a state constraint set. This is linked to the
concept of forward invariance: a set S ⊂ Rn is said to be
forward invariant for the closed-loop system if for each initial
condition x0 ∈ S, the resulting trajectory satisfies x(t) ∈ S
for all t ∈ I(x0). While we may wish to design controllers
that render the state constraint set C forward invariant, such
a controller may not exist, and one must instead search for
a subset S ⊂ C that can be rendered forward invariant. A
popular approach to designing controllers enforcing forward
invariance of such sets is through CBFs.

Definition 1 ([1]). A continuously differentiable function
h : Rn → R defining a set S as:

S :={x ∈ Rn : h(x) ≥ 0}, (2)

is said to be a CBF for (1) on S ⊂ Rn if there exists α ∈ Ke
and an open set E ⊃ S such that for all x ∈ E :

sup
u∈Rm

{Lfh(x) + Lgh(x)u} ≥ −α(h(x)). (3)

The main utility of CBFs is that any locally Lipschitz
controller k(·) satisfying (3) enforces forward invariance of
S [1]. In this paper, we focus on constraint sets of the form:

C := {x ∈ Rn : ψ(x) ≥ 0} , (4)

where ψ : Rn → R is smooth, and seek CBFs with corre-
sponding zero superlevel sets contained within C ⊃ S . The
following lemma outlines conditions for verifying CBFs.

Lemma 1 ([20]). A continuously differentiable function h :
Rn → R is a CBF for (1) on a set S as in (2) if and only
if there exists α ∈ Ke and an open set E ⊃ S such that:

Lgh(x) = 0 =⇒ Lfh(x) ≥ −α(h(x)), ∀x ∈ E . (5)

B. High-Order Control Barrier Functions

While Lemma 1 provides a simple condition for verifying
a candidate CBF, proposing such a function in the first place
is non-trivial for high-dimensional systems where inputs may
not directly affect the safety constraint. A popular way to
overcome this challenge is via HOCBFs [7], [8] wherein a
candidate CBF is dynamically extended to a new function
that may serve as a certificate of safety. The success of this
technique relies on the notion of relative degree.

Definition 2. A smooth function ψ : Rn → R is said to
have relative degree r ∈ N for (1) at x ∈ Rn if:

1) LgL
i
fψ(x) = 0, ∀i ∈ {0, . . . , r − 2},

2) LgL
r−1
f ψ(x) ̸= 0.

Similarly, ψ is said to have relative degree r on a set E ⊆ Rn
if it has relative degree for all x ∈ E .

To define HOCBFs, consider a state constraint set C ⊂
Rn as in (4) defined by a smooth function ψ : Rn → R.
Assuming that ψ has relative degree r ≥ 2 on C, define:

ψi+1(x) := Lfψi(x) + αi(ψi(x)), ∀i ∈ {0, . . . , r − 2},
(6)

where αi ∈ Ke are smooth, with ψ0(x) := ψ(x). This col-
lection of functions produces a collection of sets:

Ci := {x ∈ Rn : ψi(x) ≥ 0} , ∀i ∈ {0, . . . , r − 1}. (7)

These sets are used to define a candidate safe set as:

S :=

r−1⋂
i=0

Ci ⊂ C, (8)

which is a subset of the original constraint set C = C0. The
controlled invariance of this safe set can then be ensured
through the existence of a HOCBF.

Definition 3 ([8]). A smooth function ψ : Rn → R defining
a constraint set C ⊂ Rn as in (4) is said to be a HOCBF
for (1) on a set S ⊂ C as in (8) if there exists an open set
E ⊃ S and α ∈ Ke such that for all x ∈ E :

sup
u∈Rm

{Lfψr−1(x) + Lgψr−1(x)u} ≥ −α(ψr−1(x)). (9)

The main result with regard to HOCBFs is that any locally
Lipschitz controller satisfying the above condition renders
the set S forward invariant [7], [8]. Since S ⊂ C, this ensures
that trajectories remain within the constraint set C so long as
they are defined. The original definition of a HOCBF [7] does
not explicitly require ψ to have relative degree r; however,
since Lgψr−1(x) = LgL

r−1
f ψ(x), if ψ has relative degree

r on E ⊃ S then ψ is a HOCBF since Lgψr−1(x) ̸= 0 for
all x ∈ E . The relative degree requirements of a HOCBF are
formalized in [8] using the notion of a weak relative degree.

Definition 4. A smooth function ψ : Rn → R is said to have
weak relative degree r ∈ N for (1) on a set E ⊂ Rn if it has
relative degree r for at least one x ∈ E and LgL

i
fψ(x) =

0, ∀i ∈ {0, . . . , r − 1} for all other x ∈ E .

If ψ has a weak relative degree, Lemma 1 may be
used to verify HOCBFs: ψ is an HOCBF if Lfψr−1(x) ≥
−α(ψr−1(x)) when Lgψr−1(x) = 0. Unfortunately, when
ψ has a relative degree that is weak, it is often not a HOCBF.

Example 1 ([21]). Consider a double integrator with state
x = (x, ẋ) ∈ R2 subject to the following safety constraint:

ẋ =
[
ẋ, u

]⊤
, ψ(x) = 1− x2 ≥ 0.

By computing LgLfψ(x) = −2x, we have that ψ has
relative degree r = 2 everywhere except when x = 0. The
auxiliary function as in (6) is:

ψ1(x) = −2xẋ+ α0(1− x2).

For ψ to be a HOCBF, condition (9) requires Lfψ1(x) ≥
−α(ψ1(x)) for all points x ∈ S whenever Lgψ1(x) =
LgLfψ(x) = −2x = 0, which gives:

−2ẋ2 − 2α′
0(1− x2)xẋ ≥ −α

(
− 2xẋ+ α0(1− x2)

)
−2ẋ2 ≥ −α(α0(1)).

Since S = {x ∈ R2| ψ(x) ≥ 0, ψ1(x) ≥ 0}, ẋ may take any
value when x = 0 (see Fig. 1), so we require the inequality
above to hold for all (0, ẋ) ∈ R2. Because the right-hand
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Fig. 1. Left: Safe set S induced by the HOCBF candidate from Example 1,
where the dashed black lines denote the boundary of the constraint set C, the
solid red curves denote the boundary of the safe set S, the arrows denote the
closed-loop vector field under the resulting quadratic programming-based
controller (lighter arrows correspond to larger magnitude), the gray curves
illustrate example closed-loop trajectories, and the gray dots denote the
initial conditions of such trajectories. Right: Input generated by the resulting
HOCBF controller for fixed values of ẋ as x is varied.

side is constant, there is no α ∈ Ke satisfying the inequality
for all (0, ẋ) ∈ S, which implies that ψ is not a HOCBF.
In particular, when x = 0 and |ẋ| ≥

√
α(α0(1))/2, there

exists no input satisfying (9), and, as a result, controllers
synthesized using this candidate HOCBF will be ill-defined.
For instance, the resulting quadratic programming-based
controller (cf. [7]) tends to infinity as x → 0 for ẋ large
enough (see Fig. 1, right), causing the closed-loop dynamics
to exhibit finite escape times (see Fig. 1, left).

Even when ψ can be verified as a HOCBF, it does not
qualify as a CBF in the usual sense. Specifically, the safe set
is the zero superlevel set of neither ψ nor ψr−1 but the set
intersection defined by (8). A limitation of this paradigm is
that results for CBFs (e.g., stability and robustness) do not
trivially transfer to HOCBFs. In what follows, we present
a procedure similar to HOCBFs for constructing CBFs that
overcomes these aforementioned limitations.

III. RECTIFIED CONTROL BARRIER FUNCTIONS

A. Weak Relative Degree Two

The core idea of our approach lies in an activation strategy
for HOCBFs. To simplify the discussion and facilitate com-
parison with other methods, we restrict ourselves to safety
constraints ψ with (weak) relative degree r = 2 in this
section. HOCBFs aim to indirectly render ψ positive along
the trajectory by ensuring that ψ1(x) = Lfψ(x)+α(ψ(x)) ≥
0 along the trajectory, which is achieved by enforcing a CBF-
like condition (9) on ψ1. While such an approach uses the
input even when ψ1(x) ≥ 0, our approach will only invoke
the input if necessary, when ψ1(x) < 0.

To this end, we propose the following CBF candidate:

h(x) := ψ(x)− ReLU
(
− γ
(
Lfψ(x) + α(ψ(x))

))
, (10)

with ReLU(r) := max{0, r} the Rectified Linear Unit,
continuously differentiable γ ∈ Ke∞, γ′(s) = 0 ⇐⇒ s = 0,
and continuously differentiable α ∈ Ke. Note that one may
verify that Θ(s) := ReLU(−γ(s)) is continuously differen-
tiable. The motivation behind (10) is that when the unforced
dynamics of (1) are safe with Lfψ(x) ≥ −α(ψ(x)), the
second term in (10) is “deactivated” since it is not required to

enforce safety, yielding h(x) = ψ(x). We thus refer to (10)
as a rectified CBF (ReCBF) as higher order terms required
to enforce safety are only activated when ψ1(x) is negative.
The following theorem states that, under certain assumptions,
ReCBFs are valid CBFs.

Theorem 1. Consider system (1), a constraint set C ⊂ Rn
defined by a smooth ψ : Rn → R as in (4), and a set S ⊂ C
as in (2) defined by h : Rn → R from (10). If there exists
an open set E ⊃ S such that ψ has weak relative degree
r = 2 on E and:

LgLfψ(x) = 0 =⇒ Lfψ(x) ≥ −α(ψ(x)), (11)

for all x ∈ E , then the ReCBF h is a CBF for (1) on S.

Proof. We will leverage Lemma 1 to show that h is a CBF.
We begin by computing the derivative of h along (1):

ḣ =Lfψ(x)−Θ′ (Lfψ(x) + α(ψ(x)))

×
(
L2
fψ(x) + LgLfψ(x)u+ α′(ψ(x))Lfψ(x)

)
,

where Θ(s) := ReLU(−γ(s)). From above, we identify:

Lfh(x) =Lfψ(x)−Θ′ (Lfψ(x) + α(ψ(x)))L2
fψ(x)

−Θ′ (Lfψ(x) + α(ψ(x)))α′(ψ(x))Lfψ(x)

Lgh(x) =−Θ′ (Lfψ(x) + α(ψ(x)))LgLfψ(x).

Thus, Lgh(x) = 0 if and only if:

Θ′ (Lfψ(x) + α(ψ(x))) = 0 ∨ LgLfψ(x) = 0.

However, since (11) holds and:

Θ′(s) =

{
0 if s ≥ 0

−γ′(s) if s < 0,

we also have:

LgLfψ(x) = 0 =⇒ Lfψ(x) ≥ −α(ψ(x))
=⇒ Θ′ (Lfψ(x) + α(ψ(x))) = 0,

which implies that:

Lgh(x) = 0 ⇐⇒ Θ′ (Lfψ(x) + α(ψ(x))) = 0

⇐⇒ Lfψ(x) ≥ −α(ψ(x)).

Thus, for all x ∈ E such that Lgh(x) = 0, we have
Lfψ(x) ≥ −α(ψ(x)), while the expressions of h and Lfh
yield h(x) = ψ(x) and Lfh(x) = Lfψ(x), which leads to:

Lfh(x) = Lfψ(x) ≥ −α(ψ(x)) = −α(h(x)),

and implies that h is a CBF for (1) on S by Lemma 1.

An immediate corollary to the above is that if ψ has
relative degree two on a set E ⊃ S, then the ReCBF h
in (10) is a CBF. On the other hand, when the relative
degree is weak, condition (11) must hold, which is a require-
ment on the constraint function ψ rather than the auxiliary
function ψ1 for HOCBFs. The controlled invariant set S
produced by the ReCBF in Theorem 1 is contained within
the original constraint set C because Θ is nonnegative and
h(x) ≥ 0 =⇒ ψ(x) ≥ 0. Thus, any controller rendering S
forward invariant ensures that x(t) ∈ C for all t ∈ I(x0).
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Fig. 2. Left: Safe set induced by ReCBF (10) for Example 2 (blue curve),
where all other plot elements share the same interpretation as those in Fig.
1. Right: Safe set induced by the CBF (12) for Example 3 (green curve).

We conclude this subsection by showcasing the properties of
these CBFs compared to other CBF constructions.

Example 2 (Comparison to HOCBFs [7]). We consider the
same scenario as in Example 1 but now attempt to construct a
ReCBF using Theorem 1. Recall that LgLfψ(x) = −2x and
note that Lfψ(x) = −2xẋ so that LgLfψ(x) = 0 implies
x = 0, Lfψ(x) = 0, and α(ψ(x)) = α(1). For h in (10) to
be a CBF, (11) must hold, and it does indeed hold since:

LgLfψ(x) = 0 =⇒ Lfψ(x) + α(ψ(x)) = α(1) ≥ 0.

The safe set corresponding to the ReCBF in (10) defined with
γ(r) = r|r| is plotted with a few example trajectories in Fig.
2 (left), showing safety in accordance with Theorem 1.

Example 3 (Comparison to [10]). In [10] it is shown that
under conditions similar to Theorem 1, the function:

h(x) =

{
ψ(x) if Lfψ(x) ≥ 0

ψ(x)− 1
2Lfψ(x)

2 if Lfψ(x) < 0,
(12)

is a CBF. A comparison between the zero superlevel sets of
the ReCBF h from (10) and CBF from (12) are shown in
Fig. 2, where the sets are almost identical. However, under
controllers generated by the ReCBF in (10), the set S is not
only forward invariant but also asymptotically stable, as the
CBF condition (3) holds not only on S but also outside2 of S
[1]. In contrast, one may show that the CBF condition (3) for
(12) does not necessarily hold outside of S, leading to failure
of convergence back to S. This phenomenon is illustrated in
Fig. 2, where trajectories under ReCBF controllers from (10)
stabilize S while those corresponding to (12) do not.

Example 4 (Comparison to backstepping [14]). Another
approach to constructing CBFs is via backstepping [14],
[16]. Here, one considers a safety constraint ψ as in (4)
with weak relative degree r ≥ 2, designs a smooth CBF
controller [17] under the assumption that ψ is a CBF for a
single integrator, and then “backsteps” through this smooth
controller to construct a CBF for the original system. More
details are available in [14], [16], [21], but for the scenario
in Example 1, this backstepping CBF is:

h(x) = ψ(x)− 1
2 (ẋ− k(x))2, (13)

2In particular, (3) holds for (10) outside of S so long as ψ has relative
degree r = 2 outside of S. On the other hand, even if ψ has relative degree
r = 2 outside of S, one may show that (3) is violated for (12) at points
satisfying Lfψ(x) = 0.

−2 0 2

−1

0

1

x

ẋ
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Fig. 3. Left: Safe set induced by the CBF (13) for Example 4 (purple
curve), where all other plot elements share the same interpretation as those
in Fig. 1. Right: Safe set induced by the CBF (14) for Example 4.

where k : R → R satisfies ∂ψ
∂x (x)k(x) ≥ −α(ψ(x)). The

safe set resulting from this CBF is illustrated in Fig. 3 (left)
and is shown to be more conservative than the safe set corre-
sponding to the ReCBF from (10) in Fig. 2 (left). However,
under appropriate assumptions, the high-level approach in
this paper may also be extended to backstepping via taking:

h(x) = ψ(x)− ReLU
(
− γ
(∂ψ
∂x

(x)
(
ẋ− k(x)

)))
, (14)

with ReLU as in (10). The safe set corresponding to this CBF
is illustrated in Fig. 3 (right) and is shown to be similar to that
obtained from (10). While the results in this paper may be
extended to backstepping, this would require one to assume
(1) is in strict feedback form [14] or that ψ is a function
of an output with a valid relative degree [16], whereas the
current formulation does not require these assumptions.

Remark 1. It is often useful to define CBFs (3) with
a strict inequality to establish continuity of optimization-
based controllers [20]. The construction in Theorem 1 can
be modified to produce a CBF satisfying (3) strictly by
redefining (10) with ReLU(−γ(s− ε)) for ε > 0, provided
(11) is changed to:

LgLfψ(x) = 0 =⇒ Lfψ(x) ≥ −α(ψ(x)) + ε.

B. Mixed-input relative degrees

ReCBFs also enable the use of control inputs that appear in
higher derivatives of ψ beyond their (weak) relative degree.
For example, ψ is a CBF if it has weak relative degree one
and (5) is satisfied:

Lgψ(x) = 0 =⇒ ψ1(x) = Lfψ(x) + α(ψ(x)) ≥ 0.

When this condition does not hold, the control input may still
appear in higher order derivatives of ψ, and, unlike HOCBFs,
ReCBFs permit the use of such higher order Lie derivatives
despite that fact that Lgψ(x) ̸≡ 0.

Theorem 2. Consider system (1), a constraint set C ⊂ Rn
defined by a smooth ψ : Rn → R as in (4), and a set S ⊂ C
as in (2) defined by h : Rn → R from (10). If there exists
an open set E ⊃ S such that Lgψ(x) and LgLfψ(x) are
linearly independent whenever they are nonzero on E and:

Lgψ(x) = LgLfψ(x) = 0 =⇒ Lfψ(x) ≥ −α(ψ(x)),

for all x ∈ E , then the ReCBF h is a CBF for (1) on S.



Proof. Due to the linear independence assumption, we have
Lgψ(x) = 0 if Lgh(x) = 0. By following the proof of
Theorem 1, we get Lgh(x) = 0 if and only if Lgψ(x) = 0
and Lfψ(x) ≥ −α(ψ(x)), which implies h is a CBF, as in
the proof of Theorem 1.

Theorem 2 suggests our approach can leverage inputs
present in higher-order Lie derivatives when those appearing
in lower-order Lie derivatives are insufficient to enforce
safety. Similar to backstepping [14], this facilitates the syn-
thesis of controllers from mixed relative degree constraints,
a situation in which HOCBFs struggle without employing
additional techniques such as integral control [18].

IV. HIGHER RELATIVE DEGREE RECBF
In this section, we extend our results to safety constraints

with weak relative degree greater than two.

Definition 5. Consider a constraint set C ⊂ Rn defined by a
smooth ψ as in (4) with weak relative degree r ≥ 2 on E ⊂
Rn. With αi(s) ≥ αi−1(s) for all s ∈ R, define iteratively:

ψi(x) := Lfhi−1(x) + αi−1(hi−1(x)), (15a)
hi(x) := hi−1(x)− ReLU(−γi(ψi(x))), (15b)

for i ∈ I = {1, . . . , r − 1}, starting with h0(x) := ψ(x).
The corresponding Rectified CBF (ReCBF) is defined as:

h(x) := hr−1(x) = ψ(x)−
∑
i∈I

ReLU(−γi(ψi(x))), (16)

with smooth γi ∈ Ke∞, αi ∈ Ke, and γ′i(s) = 0 ⇐⇒ s = 0.

A ReCBF defines a candidate safe set S as in (2). Similar
to the previous section we have h(x) ≥ 0 =⇒ ψ(x) ≥ 0
so that rendering S forward invariant ensures satisfaction of
the original state constraint. The following result outlines
conditions for when a ReCBF h is a valid CBF.

Theorem 3. Consider system (1), a constraint set C ⊂ Rn
defined by a smooth ψ : Rn → R as in (4), and a set
S ⊂ C as in (2) defined by a ReCBF h : Rn → R from
(16). Provided there exists an open set E ⊃ S such that ψ
has weak relative degree r on E and:

LgL
r−1
f ψ(x) = 0 =⇒ ∃ i ∈ I, ψi(x) ≥ 0, (17)

for all x ∈ E , then the ReCBF h is a CBF for (1) on S.

Proof. Examining the Lie derivative of hi along the control
directions g, with Θi(s) := ReLU(−γi(s)):

Lghi(x) =Lghi−1(x)−Θ′
i(ψi(x))Lgψi(x)

=(1− α′
i−1(hi−1(x)))Lghi−1(x)

−Θ′
i(ψi(x))LgLfhi−1(x).

(18)

A similar result also follows when the Lie derivative is
taken along the vector field f , by replacing g with f . Since
LgL

i
fψ(x) ≡ 0 for i < r − 1 from the weak relative degree

assumption, we may ignore the first term with lower order
Lie derivative and deduce from repeatedly substituting hi−1:

Lgh(x) = (−1)r−1

(
r−1∏
i=1

Θ′
i(ψi(x))

)
LgL

r−1
f ψ(x).

To prove that h is a CBF, we appeal to Lemma 1. Using
a similar argument to that in the proof of Theorem 1, (17)
implies that Lgh(x) = 0 if and only if there exists i ∈ I
such that Θ′

i(ψi(x)) = 0, which occurs when ψi(x) ≥ 0 for
some i ∈ I. Moreover, when ψi(x) ≥ 0, we have:

Lfhi(x) = Lfhi−1(x)−Θ′
i(ψi(x))Lfψi(x)

= Lfhi−1(x) ≥ −αi−1(hi−1(x))

= −αi−1(hi−1(x)−Θi(ψi(x)))

= −αi−1(hi(x)) ≥ −αi(hi(x)),

where the inequalities are from the definition of ψi and
the ReCBF construction of αi(s) ≥ αi−1(s). As the
above implies that ψi+1(x) = Lfhi(x) + αi(hi(x)) ≥ 0, we
may iteratively apply the same procedure to deduce that
when Lgh(x) = 0, we have ψr(x) = Lfhr−1(x) +
αr−1(hr−1(x)) ≥ 0. Since h(x) = hr−1(x) this implies:

Lgh(x) = 0 =⇒ Lfh(x) ≥ −αr−1(h(x)) ≥ −α(h(x)),

for any α ∈ Ke satisfying α(s) ≥ αr−1(s), which, by
Lemma 1, implies h is a CBF for (1) on S , as desired.

Theorem 3 recursively applies a similar methodology to
that in Theorem 1 to construct a CBF from a safety constraint
with an arbitrary weak relative degree. Since ReCBFs are
CBFs, results on stability and robustness follow under regular
assumptions. Also, similar to Theorem 1, a corollary to the
above result is that (16) is a CBF if ψ has a relative degree
on some set E ⊃ S.

V. NUMERICAL EXAMPLES

We showcase the main ideas developed herein on an air-
craft control problem. We consider simplified pitch dynamics
of a fixed-wing aircraft described by [22]:[

θ̇

Ȧz

]
︸ ︷︷ ︸

ẋ

=

[ g
VT

(Az − cos(θ))

− 1
τAz

]
︸ ︷︷ ︸

f(x)

+

[
0
1
τ

]
︸︷︷︸
g(x)

u

where θ ∈ (−π, π) is the pitch angle, Az ∈ R is the
acceleration along the z-axis, g ∈ R>0 is the gravitational
acceleration, VT ∈ R>0 is the speed of the aircraft (assumed
to be fixed), and the input u ∈ R denotes the commanded Az ,
which passes through a first-order actuator model character-
ized by the time-constant τ ∈ R>0. Our objective is to design
a controller that tracks a prescribed pitch trajectory while
enforce symmetric limits on the pitch |θ| ≤ θmax, captured
by the safety constraint ψ(x) = θ2max − θ2. We verify that
this safety constraint satisfies the conditions of our results by
first noting that LgLfψ(x) = − 2g

τVT
θ, implying that ψ has

weak relative degree two with LgLfψ(x) = 0 when θ = 0.
Since Lfψ(x) = −2θθ̇ we have LgLfψ(x) = 0 implies that
Lfψ(x) = 0 ≥ −α(θ2max), implying that the ReCBF h from
(10) is a CBF for this system and safety constraint.

We illustrate the benefits of ReCBFs via comparison to
HOCBFs. To construct a ReCBF we leverage (10) with
α(r) = 1

2r and γ(r) = r|r|, incorporating ε = 0.1 to ensure
continuity of the resulting controller (cf. Remark 1). This
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Fig. 4. Evolution of the pitch angles for different controllers. The blue plot
is induced by the ReCBF when used as a safety filter on a nominal control
signal that seeks to track the pitch angle shown by the unsafe dotted green
line. The red plot, induced by the HOCBF approach, does not have a valid
solution after approximately 10.9 seconds.
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Fig. 5. Input signals for the ReCBF and HOCBF approach for the aircraft
example. The HOCBF input goes unbounded as LgLfψ(x) → 0.

ReCBF is used to construct a safety filter [3] that modifies
a nominal tracking controller to enforce safety.

The results of our ReCBF safety filter in comparison to
an HOCBF safety filter [7] (defined with the same α) are
illustrated in Fig. 4 and Fig. 5. As seen in Fig. 4, the
pitch trajectory generated by ReCBF (blue curve) tracks the
desired trajectory (green curve) when it is safe to do so,
and prevents the pitch from exceeding its prescribed limits
when the desired trajectory leaves the constraint set. The
trajectory generated by the HOCBF controller (red curve)
initially safely tracks the desired trajectory as well; however,
solutions of the closed-loop system fail to exist beyond 10.9
seconds. As shown in Fig. 5, the control input generated by
the HOCBF controller tends to negative infinity as θ(t) → 0,
a point at which LgLfψ(x) = 0. Similar to Example 1, one
may verify that this ψ does not satisfy Def. 3 and thus the
resulting HOCBF controller is not necessarily well-defined.
In contrast, our ReCBF allows trajectories to pass through
points where LgLfψ(x) = 0, leading to a well-defined
controller that handles singularities in LgLfψ(x).

VI. DISCUSSION AND CONCLUSIONS

This paper introduces Rectified CBFs: a tool for construct-
ing CBFs for high relative degree constraints that overcomes
limitations posed by traditional techniques, such as HOCBFs.
We provided detailed technical treatments for three scenarios:
(i) relative degree two safety constraints, (ii) constraints
where independent inputs affect derivatives of varying orders
up to two and (iii) higher relative degree constraints. We
presented a comparative analysis of our approach with ex-
isting approaches. While our method offers some theoretical
advantages over HOCBFs by handling constraints with weak
relative degrees, it is not without its own limitations. The
controllers generated by ReCBFs are sensitive to the various

hyperparameters on which they depend, and improper tuning
of these hyperparameters can lead to controllers with large
Lipschitz constants that produce large input. Thus, charac-
terizing the properties of these controllers in relation to their
hyperparameters is an important direction for future work.
Other future research directions include unifying our results
on mixed and high relative degrees.
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